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Thermodynamics of coupled identical oscillators within the path-integral formalism
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A generalization of symmetrized density matrices in combination with the technique of generating functions
allows one to calculate the partition function of identical particles in a parabolic confining well. Harmonic
two-body interactions~repulsive or attractive! are taken into account. Also the influence of a homogeneous
magnetic field, introducing anisotropy in the model, is examined. Although the theory is developed for fermi-
ons and bosons, special attention is paid to the thermodynamic properties of bosons and their condensation.
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I. INTRODUCTION

The study of the density matrices of identical partic
~bosons or fermions! moving freely in a box@1# is general-
ized in this paper to the case of identical particles in a pa
bolic confinement potential with either harmonic interactio
between the particles or an anisotropy induced by a ho
geneous magnetic field on top of the parabolic confinem
This model, giving rise to repetitive Gaussian integrals,
lows one to derive an analytical expression for the genera
function of the partition function. For an ideal gas of noni
teracting particles in a parabolic well, this generating fun
tion coincides with the grand-canonical partition functio
With interactions, the calculation of this generating functi
circumvents the constraints on the summation over
cycles of the permutation group. Moreover, it allows one
calculate the canonical partition function recursively for t
system with harmonic two-body interactions. The theory
developed both for fermions and for bosons. In view of t
recent interest in Bose-Einstein condensation in a trap@2–4#,
more attention has been paid to the boson case in the dis
sion of the results. The model system discussed here
already been studied in the context of quantum dots w
operator techniques, and the eigenvalues and eigens
were calculated including the effect of harmonic two-bo
interactions and in the presence of a magnetic field@5#. How-
ever, to the best of our knowledge neither the boson case
the thermodynamics seems to have been analyzed p
ously. It should also be mentioned that the idea of first
panding the Hilbert space to the configuration space and
projecting onto the appropriate subspace by gro
theoretical means has been used recently@6,7# in the context
of quantum dots to study the ground-state correlations
fermions and bosons.

Another motivation to perform the present analytical c
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culations lies in our path-integral formulation of the dens
matrices forN particles@8–10#. Indeed, particles in a para
bolic potential are a favorite testing ground for the pa
integral method@11–13#. It should be noted that for our for
mulation the existence of a positive measure over a w
defined domain in theR3N configuration space is essential
view of any algorithmic approach to the problem. In th
present paper, which is in essence analytical, integrat
over the configuration space are performed. The reaso
that the extension of the state space to the configura
space makes the Gaussian integrals tractable. The perm
tion symmetry leads to summations over the cycles that
performed using the generating function technique, which
one of the main results of the present paper.

The model ofN identical particles in a parabolic well, in
the presence of a magnetic field and with harmonic repuls
or attractive two-body interactions, has its intrinsic val
since it constitutes an exactly soluble idealization of atoms
a magnetic trap. It should be stressed that the associatio
identical particles with each three oscillator degrees of fr
dom makes the model three dimensional. Without Bo
Einstein or Fermi-Dirac statistics, i.e., for ‘‘distinguishable
particles, the model is equivalent with 3N one-dimensional
oscillators because each degree of freedom decouples in
a way that there is no difference in statistical behavior
tween 3N one-dimensional~1D! oscillators andN 3D oscil-
lators @14#.

This paper is organized as follows. The calculation te
nique is explained in the next section. In Sec. III we rep
the same calculation for the model with a homogene
magnetic field. In Sec. IV bosons in three dimensions
analyzed in some detail. In Sec. V the conclusions are giv

II. HARMONICALLY INTERACTING IDENTICAL
PARTICLES IN A PARABOLIC WELL

In this section we calculate the partition function ofN
identical particles with the following Lagrangian includin
one-body and two-body potentials:
m

227 © 1997 The American Physical Society
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L5
1

2(j51

N

ṙ j
22V12V2 , V15

V2

2 (
j51

N

r j
2 ,

V252
v2

4 (
j ,l51

N

~r j2r l !
2. ~2.1!

~Atomic units are used.! The potentials can be rewritten i
terms of the center-of-mass coordinateR and coordinates
uj describing the coordinates of the particles measured f
the center of mass

R5
1

N(
j51

N

r j , uj5r j2R, ~2.2!

from which

V11V25Vc.m.1V, Vc.m.5
1

2
NV2R2, V5w2(

j51

N

uj
2,

~2.3!

with

w5AV22Nv2. ~2.4!

The requirement thatw has to be positive expresses the s
bility condition that the confining potential has to be stro
enough to overcome the repulsion between the particles.
harmonic interparticleattraction is considered, the eigenfre
quencyw would becomew5AV21Nv2 and no stability
condition has to be imposed on the confining potential. N
tice that these transformations diagonalize neither the
grangian nor the Hamiltonian because the coordinatesuj are
not independent of the center-of-mass coordinate.

Since the system consists, in each direction, of one de
of freedom with frequencyV andN21 degrees of freedom
with frequencyw, the propagator

KD~r19 , . . . ,rN9 ,bur18 , . . . ,rN8 ,0!

[^r19 , . . . ,rN9 ue2bHur18 , . . . ,rN8 &D ~2.5!

for distinguishableparticles~indicated by the subscriptD for
3 dimensions andd in 1 dimension! can be calculated from
the action expressed in the imaginary time variable and
of course a product of the propagatorsKd per component:

KD~r19 , . . . ,rN9 ,bur18 , . . . ,rN8 ,0!

5Kd~ x̄9,bux̄8,0!Kd~ ȳ9,bu ȳ8,0!Kd~ z̄9,buz̄8,0!, ~2.6!

where the column vectorx̄ contains thex components of the
particles, i.e.,x̄T5(x1 , . . . ,xN) and similarly for ȳ and z̄.
Knowing the propagatorK(x9,bux8,0)Ã of a single har-
monic oscillator with frequencyÃ

K~xb ,bux0,0!Ã5A Ã

2p sinhÃb

3expH 2
Ã

2

~xb
21x0

2!coshÃb22xbx0
sinhÃb J ,

~2.7!
m

-

a

-
a-

ee

is

one finds, for the one-dimensional propagatorKd of the N
distinguishable oscillators in the interacting system,

Kd~ x̄9,bux̄8,0!5
K~ANX9,buANX8,0!V

K~ANX9,buANX8,0!w

3)
j51

N

K~xj9 ,buxj8,0!w , ~2.8!

where the factorAN in ANX9 accounts for the massN ~in
atomic units! of the center. The denominator in Eq.~2.8!
compensates for the fact thatN21 instead ofN degrees of
freedom of frequencyw are available. The three-dimension
propagatorKD @Eq. ~2.5!# for N distinguishable oscillators o
the interacting system is, according to Eqs.~2.6! and ~2.8!,
given by

KD~ r̄ 9,bu r̄ 8,0!5
K~ANR9,buANR8,0!V

K~ANR9,buANR8,0!w

3)
j51

N

K~r j9 ,bur j8,0!w , ~2.9!

K~r j9 ,bur j8,0!w

5K~xj9 ,buxj8,0!wK~yj9 ,buyj8,0!wK~zj9 ,buzj8,0!w , ~2.10!

wherer̄ denotes a point in the configuration spaceR3N, i.e.,
r̄T[„(x1 ,y1 ,z1), . . . ,(xN ,yN ,zN)…. The symmetrized den
sity matrix KI for 3D identical particles~indicated by the
subscriptI ) can be obtained by using the following proje
tion, with P denoting the permutation matrix:

KI~ r̄ 9,bu r̄ 8,0!5
1

N!(p jpKD~Pr̄ 9,bu r̄ 8,0!, ~2.11!

wherej511 for bosons andj521 for fermions. It should
be emphasized thatP acts on the particle indices, not on th
components ofr separately. The partition function is the
readily obtained by integrating over the configuration spa

ZI5E dr̄ KI~ r̄ ,bu r̄ ,0!5E dr̄
1

N!(p jpKD~Pr̄ ,bu r̄ ,0!.

~2.12!

The remaining part of this section will be devoted to t
explicit evaluation of this integral for the partition function
The integration proceeds in three stages: the first stage d
with the center-of-mass treatment, the second one conc
the cyclic decomposition, and in the third step the summ
tion over the cycles will be performed.

A. Center of mass

The center-of-mass coordinateR not only depends on the
coordinates of all the particles, but it also has its own pro
gator. Therefore, substitutingR by its expression in terms o
the particle positions and then performing the integrat
seems not to be the most adequate way to deal with
integration over the configuration space. Instead, the follo
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ing identity is used for the formal treatment ofR as an inde-
pendent coordinate, at the expense of additional integrati

E dr̄ f S r̄ ,1N(
j51

N

r j D 5E dRE dr̄ f ~ r̄ ,R!dSR2
1

N(
j51

N

r j D .
~2.13!

Fourier transformation of thed function then leads to

E dr̄ f S r̄ ,1N(
j51

N

r j D
5E dRE dk

~2p!3
eik•RE dr̄ f ~ r̄ ,R!e2 i k̄– r̄ , ~2.14!

wherek̄T5(k/N)„(1,1,1),. . . ,(1,1,1)… is a 3N-dimensional
row vector. Applying this transformation to the partitio
functionZI and rearranging the factors one obtains

ZI5E dRE dk

~2p!3
eik•R

K~ANR,buANR,0!V

K~ANR,buANR,0!w

3E dr̄
1

N!(p jp)
j51

N

K„~Pr ! j ,bur j ,0…we2 ik–r j /N. ~2.15!

This transformation makesR independent of the particle
positions relative to the center of mass. The real depende
on the relative positions is reintroduced by the Fourier tra
form. It should be noted that the explicit dependence of
propagator ~2.9! on R, and the presence of the facto
e2 ik–r j /N are consequences of the two-body interactions.

The next step is to rewrite the sum over the permutati
as a sum over all possible cycles. This will be done in
next subsection. An excellent example of such a decomp
tion into cycles has been given by Feynman@1# for a system
of noninteracting particles in a box.

B. Cyclic decomposition

A permutation can be broken up into cycles. Suppose
a particular permutation containsMl cycles of lengthl . The
positive integersMl and l then have to satisfy the constrai

(
l
lM l5N. ~2.16!

Furthermore, the numberM (M1 , . . . ,MN) of cyclic decom-
positions withM1 cycles of length 1, . . . , Ml cycles of
length l , . . . is known to be

M ~M1 , . . . ,MN!5
N!

P lM l ! l
Ml
. ~2.17!

A cycle of lengthl will be obtained froml21 permuta-
tions. Therefore, the sign factorjp can be decomposed as

jp5)
l

j~ l21!Ml. ~2.18!
s:

ce
-
e

s
e
si-

at

Combining these results originating from the permutat
symmetry, one obtains

ZI5E dRE dk

~2p!3
eik•R

K~ANR,buANR,0!V

K~ANR,buANR,0!w

3 (
M1 , . . . ,MN

)
l

j~ l21!Ml

M l ! l
Ml

@Kl~k!#Ml, ~2.19!

Kl~k!5E dr l11E dr l•••E dr1d~r l112r1!

3)
j51

N

K~r j11 ,bur j ,0!we
2 ik–r j /N. ~2.20!

Thed function expresses that the decomposition is cyclic
is obvious that

Kl~k!5Kl
~1D!~kx!Kl

~1D!~ky!Kl
~1D !~kz!, ~2.21!

which allows one to analyzeKl(k) from its one-dimensiona
constituents

Kl
~1D!~kx!5E dxl11E dxl•••E dx1d~xl112x1!

3)
j51

N

K~xj11 ,buxj ,0!we
2 ikxxj /N. ~2.22!

Using the semigroup property@15# of the harmonic-
oscillator propagatorK(xj11 ,buxj ,0)w , all integrations but
one can be performed

Kl
~1D!~kx!5E dx K~x,lbux,0!wexpS2E

0

lb

dt f x~t!x~t!D ,
~2.23!

where

f x~t!5 i
kx
N (

j50

l21

d~t2 jb!. ~2.24!

The integral~2.23! is the propagatorKw, f of a driven har-
monic oscillator with the Lagrangian

Lw, f x5
1

2
ẋ22

1

2
w2x21 f x~t!x, ~2.25!

studied in@11,16#. It should be noted again that without two
body interactions the driving force~2.24! is lacking. Taking
over the result from@16# and integrating over the configura
tion space, one obtains
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Zw, f x~b!5E dxKw, f x~x,bux,0!

5
1

2 sinh12bw
expS 1

2E0
b

dtE
0

b

ds
f x~t! f x~s!

2w

3

coshF S b

2
2Ut2sU DwG

sinh
1

2
bw

D . ~2.26!

After straightforward algebra one obtains, for the 1D fun
tion Kl

(1D)(kx),

Kl
~1D!~kx!5

1

2 sinh12 lbw
expS 2

l

4N2

kx
2

w

11e2bw

12e2bwD
~2.27!

and for its 3D extension

Kl~k!5S 1

2 sinh12 lbw
D 3expS 2

l

4N2

k2

w

11e2bw

12e2bwD . ~2.28!

Using Eq.~2.16! one then is left with a sixfold integral fo
the partition function

ZI5E dRE dk

~2p!3
eik•R

K~ANR,buANR,0!V

K~ANR,buANR,0!w

3expS 2
1

4N

k2

w

11e2bw

12e2bwD
3 (

M1 , . . . ,MN
)
l

j~ l21!Ml

M l ! l
Ml S 1

2 sinh12 lbw
D 3Ml

.

~2.29!

Both the integrations overk andR are Gaussian, leading t
the following series forZI :

ZI5S sinh
1

2
bw

sinh
1

2
bV

D 3

ZI~N!,

ZI~N![ (
M1 , . . . ,MN

)
l

j~ l21!Ml

M l ! l
Ml S e2~1/2!lbw

12e2 lbwD 3Ml

.

~2.30!

Without two-body interactions (w5V), ZI(N) is the par-
tition function of a set of identical oscillators. The partitio
function ZI differs from it only by a center-of-mass corre
tion and the actual values ofw. The remaining summation
over the cycles involves the constraint~2.16!, which, how-
ever, can be removed by the use of the generating func
technique, which will be considered in the next subsectio
-

n
.

C. Generating function

Concentrating on the explicit dependence ofZI(N) on N
~with w considered as a parameter!, one can construct the
generating function

J~u!5 (
N50

`

ZI~N!uN, ~2.31!

with ZI(0)51 by definition. The partition functionZI(N)
can then be obtained by taking the appropriate derivative
J(u) with respect tou, assuming that the series forJ(u) is
convergent nearu50:

ZI~N!5
1

N!

dN

duN
J~u!uu50 . ~2.32!

The summation over the number of cycles with lengthl is
now unrestricted and can easily be performed:

J I~u!5expS (
l51

`

j l21
e2~3/2!lbwul

l ~12e2 lbw!3D . ~2.33!

This series can be rewritten into the more familiar form

J I~u!5expS 2j (
n50

`
1

2
~n11!~n12!

3 ln~12jue2bw~3/21n!!D . ~2.34!

Before we study this equation in detail two remarks are
order: First,J I(u) is the generating function of a mode
without two-body interactions. In that casew5V and
J I(u) coincides with the well-known@17–19# grand-
canonical partition function of a set of identical particles
a parabolic well. Second, for the noninteracting ca
in one dimension @i.e., with the multiplicity factor
1
2(n11)(n12) replaced by 1#, we recover the results of Re
@20#. To the best of our knowledge, the interacting case
not been analyzed up to now for identical particles. For d
tinguishable particles it has been studied before@21#.

D. Recurrence relations for the partition function

Starting from the expression forJ I(u) derived in the pre-
ceding subsection for the interacting model, a recursion
lation can be obtained forZI(N). Introducing

b5e2bw ~2.35!

for brevity in the notations, we observe that

d

du
J I~u!5J I~u! (

n50

`
1

2
~n11!~n12!

b3/21n

12jub3/21n .

~2.36!

Considering next
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ZI~N!5
1

N!

dN21

duN21

d

du
J~u!uu50 ,

the product rule and an elementary binomial expansion
be used to find

ZI~N!5
1

N (
m50

N21

jN2m21S b~1/2!~N2m!

12bN2m D 3ZI~m!. ~2.37!

The corresponding one-dimensional version of this rec
rence relation~indicated with the subscripti to distinguish it
from the 3D case with capital subscript! becomes

Zi~N!5
1

N (
m50

N21

jN2m21
b~1/2!~N2m!

12bN2m Zi~m!, ~2.38!

leading to the following partition functions in closed for
for one-dimensional bosons and one-dimensional fermio

Zb5
b~1/2!N

)
j51

N

~12bj !

, Zf5
b~1/2!N2

)
j51

N

~12bj !

. ~2.39!

It is easy to check that these partition functions are the s
tion of the recurrence relation forZi(N) with j51 for
bosons andj521 for fermions. However, we did not find
systematic method to obtain analytical solutions of this ty
of recurrence relations. For example, for the 3D case we
to rely on numerical schemes, as will be discussed bel
But at this stage, it is worthwhile first to consider the pre
ence of an homogeneous magnetic field as the origin of
isotropy in our model ofN identical oscillators.

III. N IDENTICAL OSCILLATORS
IN A MAGNETIC FIELD

The Lagrangian ofN particles in a confining paraboli
potential in the presence of a magnetic field is

Lvc
5
1

2 (
j51

N

~ ṙ j22vcxj ẏ j !
22

1

2
V2(

j51

N

r j
2 , ~3.1!

wherevc is the cyclotron frequency. For this model, th
calculations of the preceding section can in essence be
n

r-

:

u-

e
d
.
-
n-

re-

peated. First the propagator for distinguishable particles
calculated. The next step will be the projection on the ir
ducible representation of the permutation group and perfo
ing the cyclic decomposition. Then the generating function
introduced to circumvent the constraints on the partition
cycles and finally the summation over the cycles is p
formed.

The fact that the energy spectrum and the wave func
can be calculated when harmonic interparticle interacti
are included@5# indicates that the propagator and the pa
tion function for the model in a magnetic field with two-bod
interaction can be obtained using our methods. The calc
tion technique is very demanding; therefore it seemed ap
priate to illustrate the method on the basis of the sim
model ~3.1!.

A. The propagator for distinguishable particles

For distinguishable particles, the many-particle propa
tor is a product of one-particle propagators. The one-part
propagatorKvc

(1)(r ,bur 8) of this model can be calculated b

stochastic techniques@22# or by path-integral technique
@11#. The evaluation is somewhat lengthy but straightfo
ward, resulting eventually in

FIG. 1. Values ofr1 , . . . ,rN for N5100 from the recurrence
relation ~4.3! for the three temperaturesT/Tc50.5, 1, and 2.
Kvc

~1!~r ,bur 8!5A V

2p sinhbV

s

2p sinhbs
expH 2

V$@z21~z8!2#coshbV22zz8%

2 sinhbV J
3expH 2

s

2
„x21y21~x8!21~y8!2D coshbs22~xx81yy8!cosh

1

2
bvsinhbs %

3expH 2 i S 1
2

vc~xy2x8y8!2s

sinh
1

2
bv

sinhbs
~y8x2yx8!D J , ~3.2!
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with the eigenfrequencys given by

s5AV21
1

4
vc
2. ~3.3!

The partition function corresponding to this single-partic
propagator is obtained by integrating over the configurat
space

Zvc

~1!~b!5E dr Kvc

~1!~r ,bur !

5F8sinhb V

2
sinhbS s21

vc

4 D sinhbS s22
vc

4 D G21

,

~3.4!

which coincides with the partition function of a 3D harmon
oscillator if vc50.

B. The partition function and generating function
for identical particles

For N identical particles, the propagator becomes

KI ,vc
~ r̄ ,bu r̄ 8!5

1

N!(p jp)
j51

N

Kvc

~1!
„~Pr ! j ,bur j8…, ~3.5!

with the corresponding partition function given by

ZI ,vc
~N!5E dr̄ KI ,vc

~ r̄ ,bu r̄ !. ~3.6!

Using the cyclic decomposition and the semigroup prope
as before, followed by the relaxation of the constraint~2.16!
on the number of cycles, one finds for the generating fu
tion

Jvc
~u!5expS (

l51

`
j l21

l
Zvc

~1!~ lb!ul D . ~3.7!

Because, in this model, with a magnetic field no two-bo
interactions were taken into account, this expression eq
the grand-canonical partition function of the model
u5ebm is interpreted as the fugacity, withm the chemical
potential.

IV. BOSONS IN THREE DIMENSIONS

In the previous sections we have obtained the gra
canonical partition function of identical harmonic oscillato
in a confining parabolic potential well without a magne
field @Eq. ~2.34!# and in the presence of a magnetic field@Eq.
~3.7!#. For the same system the canonical partition funct
is obtained for an attractive as well as for a repulsive h
monic two-body interaction@Eq. ~2.30!#. The expressions ar
given for bosons and for fermions.

The actual calculation of the thermodynamic properties
the mean-square radius of the 3D cloud of identical partic
is substantially complicated by the lack of an explicit expr
sion in closed form for the partition function. Therefore n
merical methods have to be used. We concentrate this an
n

y

-

y
ls

-

n
r-

r
s
-

ly-

sis on the boson case. For fermions a different scheme
have to be developed.

A. In the absence of a magnetic field

The recurrence relation~2.37! is not directly accessible
for numerical computation, as can easily be seen by eval
ing the expected dominant factorb3N/2/) j51

N (12bj )3 for
bosons. For a relatively low temperature and a mode
number of particles, say,b50.75 andN51000, this factor is
as small as 1.04023102182. We therefore isolate this facto
using the following scaling for the partition function:

ZB~N!5sN

b~3/2!N

P j51
N ~12bj !3

, ~4.1!

and rewrite the recurrence relation~2.37! in terms of the
activity rN ~see, e.g.,@21#! defined as

sN5rNsN21⇒sN5s0)
j50

N

r j , ~4.2!

where s05r0[1 have been introduced for convenienc
The recurrence relation~2.37! then becomes, after some m
nipulations,

rN5
1

N S 12bN

12b D 3F11 (
m50

N22 S 12b

12bN2mD 3 )
j5m11

N21
~12bj !3

r j
G .

~4.3!

The corresponding recurrence relation for the internal ene
of the internal degrees of freedom becomes

UB~N!

\w
5
1

N

1

rN
S 12bN

12b D 3H 32 11b

12b
1

UB~N21!

\w

1 (
m50

N22 F S 32 ~N2m!
11bN2m

12bN2m1
UB~m!

\w D
3S 12b

12bN2mD 3 )
j5m11

N21
~12bj !3

r j
G J . ~4.4!

The temperature scale used to expressb5e2w/kT is

t5S N

z~3! D
21/3kT

w
[

T

Tc

where ~4.5!

z~3!51. 2021.

The recurrence relations~4.3! and ~4.4! for r1 , . . . ,rN and
UB(1), . . . ,UB(N) can be computed very efficiently. Th
values ofr1 , . . . ,rN for N5100 are shown in Fig. 1 for the
three temperaturesT/Tc50.5, 1, and 2. ForT52Tc it turns
out thatr j is about 8 times larger thanr j21 for j approach-
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ingN, which makes it extremely difficult to deal numerical
with the values of the partition function rather than with t
proportionality factors.

OncerN is known, the internal energyUB(N) is readily
obtained from Eq.~4.4!. The results forN510, 100, and
1000 are shown in Fig. 2. The specific heat in the canon
ensemble can also be calculated from these parameters.
is shown in Fig. 3, clearly illustrating the effect of conde
sation for a finite number of particles. Anticipating Se
IV B, it should be noted that the specific heat in the cano
cal ensemble forN particles and without repulsive two-bod
interactions is identical to the specific heat in the gra
canonical ensemble with the average number of parti
given by the same value ofN. The reason why we compar

FIG. 2. Internal energyu/N[UB(N)/N\w for N510, 100,
1000 as a function ofT/Tc .
th

rg
al
his

.
i-

-
s

both ensembles without repulsive interactions is the requ
ment that in the grand-canonical ensemble the system sh
be stable for any large number of particles, which is not
case in the Gaussian model with repulsion because the
fining potential can only accommodate a finite number
particles as a consequence of Eq.~2.4!. Another interesting
consequence of the repulsive interactions follows from
dependence of the condensation temperatureTc on the num-
ber of particles, which obeys the following scaling law ta
ing Eq. ~2.4! into account:

Tc5
AV22Nv2

k S N

z~3! D
1/3

⇒ kTc
V S v2

V2 z~3! D 1/35A12
Nv2

V2 SNv2

V2 D 1/3.
~4.6!

For the case of attractive interactions and no confinem
potential,Tc is proportional toN

4/3. The condensation tem
perature for both cases is plotted in Fig. 4. For the Gaus
model, the case of harmonic attraction does not pose
problem because in this model there is no sign of an ‘‘extr
collapse due to the nature of the interaction. The only c
sequence seems to be that the condensation occurs at a
higher temperature than would be the case without two-b
interactions or with a repulsive harmonic interaction.

B. In the presence of a magnetic field

The thermodynamic properties in the grand-canonical
semble of an ideal Bose gas in a parabolic well and in
presence of a magnetic field can be obtained directly fr
Eqs.~3.4! and ~3.7!. Substitutingu by the fugacityebm, the
Gibbs free energyGvc

for the boson case (j511) becomes
Gvc
52

1

b(
l51

`
1

l

elb[m2~1/2!V2s]

~12e2 lbV!~12e2 lb[s1~1/2!vc] !~12e2 lb[s2~1/2!vc] !
. ~4.7!
d-
After a power-series expansion of the denominators,
summation over the cycle lengthsl can be performed:

Gvc
5
1

b (
j ,k,l50

`

ln~12ebme2bV~1/21 j !

3e2bs~11k1 l !e2~1/2!bvc~k2 l !!, ~4.8!

as expected from a Bose-Einstein distribution with ene
levels

e j ,k,l5
1

2
V1s1 jV1kS s1

1

2
vcD1 l S s2

1

2
vcD . ~4.9!

The average number of particlesN52]Gvc
/]m is given by
e

y

N5 (
j ,k,l50

`

nj ,k,l ,

nj ,k,l5
ebme2bV~1/21 j !e2bs~11k1 l !e2~1/2!bvc~k2 l !

12ebme2bV~1/21 j !e2bs~11k1 l !e2~1/2!bvc~k2 l !

~4.10!

and the fugacity can be eliminated in favor of the groun
state occupancyn0,

n05
ebme2~1/2!bVe2bs

12ebme2~1/2!bVe2bs⇒ebm5aeb[ ~1/2!V1s] ~4.11!

with

a[n0 /~n011!.
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Restoring the cyclic summation for reasons of numeri
convergence, one obtains for the average number of p
cles

N5(
l51

`
a l

Dl
, Dl[~12e2 lbV!~12e2 lb[s1~1/2!vc] !

3~12e2 lb[s2~1/2!vc] !, ~4.12!

which can be cast in the form of the numerically tracta
series

N5
a

12a
1(

l51

`

a l S 1Dl
21D . ~4.13!

For givenN, standard numerical techniques can be used
determineaP@0,1# and hence the ground-state occupan
n0 , which is shown in Fig. 5 forvc50 and in Fig. 6 for
vc /V55 as a function ofT/Tc for several values ofN. It
turns out that the parabolic well is more important than
anisotropy due to the presence of the magnetic field.

FIG. 3. Specific heatCB /Nk per particle in units of the Boltz-
mann constantk for N510, 100, 1000 as a function ofT/Tc .

FIG. 4. Critical temperatureTc as a function of the number o
particlesN for a repulsive~full line! and an attractive~dashed line!
two-body interaction.
l
ti-

to
y

e
e

anisotropy only moderately influences the temperature
pendence of the ground-state occupancy.

The internal energyUvc
5](bGvc

)/]b2mN becomes

Uvc
5(

l51

`
a l

Dl
S V

e2 lbV

12e2 lbV 1S s1
1

2
vcD e2 lb[s1~1/2!vc]

12e2 lb[s1~1/2!vc]

1S s2
1

2
vcD e2 lb[s2~1/2!vc]

12e2 lb[s2~1/2!vc] D ~4.14!

and its numerical evaluation oncea is determined presents
no numerical difficulties. The resulting specific heat is show
in Fig. 7 forvc /V55. A comparison with Fig. 3 reveals tha
the anisotropy due to the magnetic field essentially broad
the peak in the specific heat near the condensation temp
ture, but does not substantially alter the structure.

FIG. 5. Relative ground-state occupancyn0 /N as a function of
t/N1/3, with t the reduced temperaturet5kT/w for vc50 and for
several values ofN.

FIG. 6. Relative ground-state occupancyn0 /N as a function of
t/N1/3 with t the reduced temperaturet5kT/w for vc /V55 and
for several values ofN.
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V. DISCUSSION AND CONCLUSION

In this paper we applied the method of symmetrical de
sity matrices, developed by Feynman for a system of non
teracting particles in a box, to a system of harmonically
teracting particles in a confining parabolic potential. T
interaction could be taken into account, due to the Gaus
nature of the propagators, allowing integration over the c
figuration space. The symmetrization resulting from the p
jection of the propagators for distinguishable particles on
appropriate representation of the permutation group gi
rise to a series that could be summed using the genera
function technique. Without these generating functions
calculation has to be restricted to a limited number of p
ticles @6,7,23#. Using them, not only could the grand
canonical partition functionJ(u) be obtained in the param
eter range of the model whereJ(u) is well defined, but also
the canonical partition functionsZ(N) for a given number
N of identical particles could be obtained as a recursion
partition functions of a smaller number of particles for th
interacting system. The recurrence relation for the activ
rN , i.e., the proportionality factor betweenZ(N) and
Z(N21), allows for an accurate numerical treatment of t

FIG. 7. Specific heatCB /Nk per particle in units of the Boltz-
mann constantk as a function oft/N1/3 with t the reduced tem-
peraturet5kT/w for vc /V55 and for several values ofN.
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thermodynamical quantities of the model, such as the in
nal energy and the specific heat.

Also the thermodynamic properties of the same mode
the presence of a homogeneous magnetic field could be
vestigated along these lines. A detailed analysis of the id
gas in a confining parabolic potential with anisotropy due
a magnetic field was presented; special attention was pa
the relation between the number of condensed atoms,
magnetic field, the strength of the confinement potential,
the total number of particles. The relationship between
parameters of our model and the characteristics of ato
traps@2–4# lies beyond the scope of the present paper.

It should be mentioned that in the absence of two-bo
interactions, the generating function can be identified as
grand-canonical partition function. In that case the spec
heat as obtained from the grand-canonical ensemble fo
average number of̂N& particles calculated using the chem
cal potential equals the specific heat obtained from the
nonical ensemble with the number of particlesN given by
^N&. For a more elaborate discussion we refer to@17#.

It should also be mentioned that in this the model it
assumed that the spin degrees of freedom are fixed.
simplifying assumption is imposed by the symmetrizati
method, which becomes more involved if the spin degree
freedom depend on the configuration of the particles.

In summary, the partition function of a general Gauss
model for bosons and fermions, with or without a magne
field, has been calculated analytically and the thermodyna
cal properties of this model have been studied. Particu
attention has been given to the Bose-Einstein condensa
in the presence of two-body interactions, repulsive and
tractive, and in the presence of a magnetic field.
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