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Thermodynamics of coupled identical oscillators within the path-integral formalism
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A generalization of symmetrized density matrices in combination with the technique of generating functions
allows one to calculate the partition function of identical particles in a parabolic confining well. Harmonic
two-body interactiongrepulsive or attractieare taken into account. Also the influence of a homogeneous
magnetic field, introducing anisotropy in the model, is examined. Although the theory is developed for fermi-
ons and bosons, special attention is paid to the thermodynamic properties of bosons and their condensation.
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[. INTRODUCTION culations lies in our path-integral formulation of the density
matrices forN particles[8—10]. Indeed, particles in a para-
The study of the density matrices of identical particlesbolic potential are a favorite testing ground for the path-
(bosons or fermiosmoving freely in a boX{ 1] is general- integral method11-13. It should be noted that for our for-
ized in this paper to the case of identical particles in a paramulation the existence of a positive measure over a well-
bolic confinement potential with either harmonic interactionsdefined domain in th&3N configuration space is essential in
between the particles or an anisotropy induced by a homoview of any algorithmic approach to the problem. In the
geneous magnetic field on top of the parabolic confinemenpresent paper, which is in essence analytical, integrations
This model, giving rise to repetitive Gaussian integrals, al-over the configuration space are performed. The reason is
lows one to derive an analytical expression for the generatinghat the extension of the state space to the configuration
function of the partition function. For an ideal gas of nonin- space makes the Gaussian integra]s tractable. The permuta_
teracting particles in a parabolic well, this generating functjon symmetry leads to summations over the cycles that are
tion coincides with the grand-canonical partition fUnCtion.performed using the generating function technique, which is
With interactions, the calculation of this generating functionpne of the main results of the present paper.
circumvents the constraints on the summation over the The model ofN identical particles in a parabolic well, in

cycles of the permutation group. Moreover, it allows one tothe presence of a magnetic field and with harmonic repulsive
calculate the canonical partition function recursively for thegr attractive two-body interactions, has its intrinsic value
system with harmonic two-body interactions. The theory issince it constitutes an exactly soluble idealization of atoms in
developed both for fermions and for bosons. In view of thea magnetic trap. It should be stressed that the association of
recent interest in Bose-Einstein condensation in aft2a@],  jdentical particles with each three oscillator degrees of free-
more attention has been pa|d to the boson case in the diSCl@om makes the model three dimensional. Without Bose-
sion of the results. The model system discussed here hasnstein or Fermi-Dirac statistics, i.e., for “distinguishable”
already been studied in the context of quantum dots wittharticles, the model is equivalent witiN3one-dimensional
operator techniques, and the eigenvalues and eigenstaigscillators because each degree of freedom decouples in such
were calculated including the effect of harmonic two-bodya way that there is no difference in statistical behavior be-
interactions and in the presence of a magnetic figlJdHow-  ween 3N one-dimensional1D) oscillators andN 3D oscil-
ever, to the best of our knowledge neither the boson case NPitors[14].

the thermodynamics seems to have been analyzed previ- Thjs paper is organized as follows. The calculation tech-
ously. It should also be mentioned that the idea of first eXnique is explained in the next section. In Sec. Ill we repeat
panding the Hilbert space to the configuration space and thefe same calculation for the model with a homogeneous
projecting onto the appropriate subspace by groupmagnetic field. In Sec. IV bosons in three dimensions are

theoretical means has been used recdly] in the context  analyzed in some detail. In Sec. V the conclusions are given.
of quantum dots to study the ground-state correlations for

fermions and bosons.

Another motivation to perform the present analytical cal- Il HARMONICALLY INTERACTING IDENTICAL

PARTICLES IN A PARABOLIC WELL

*Also at Rijksuniversitair Centrum Antwerpen, Universiteit  In this section we calculate the partition function ef
Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgiunidentical particles with the following Lagrangian including
and Technische Universiteit Eindhoven, The Netherlands. one-body and two-body potentials:
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one finds, for the one-dimensional propagatgr of the N
Vi—V,, Vlz—E r2, distinguishable oscillators in the interacting system,
2=

(1)2 N K (718|70):K(\/NX”!B|\/NX,!O)Q
Vo=—— 2 (=) 2. ST KGN BINX 0,

j,I=1

S, it

L—l
_Ejzl r].

(Atomic units are useg.The potentigls can be rewr!tten in XH K(x}' ,B|Xf'0)w, (2.9
terms of the center-of-mass coordind®eand coordinates j=1

u; describing the coordinates of the particles measured from ) _
the center of mass where the factor/N in NX” accounts for the mas (in

atomic unitg of the center. The denominator in E(R.8)

1 compensates for the fact thidt—1 instead ofN degrees of
R= N-Z‘l r, u=ri—R, (22 freedom of frequency are available. The three-dimensional
! propagatoK, [Eq.(2.5)] for N distinguishable oscillators of
from which the interacting system is, according to E¢&.6) and (2.8),
given by
1 N
Vit Vo=V +V,  Vem=5NOR?, v=wzj§=‘,l u?, Kol B0 = K(VNR”, B|YNR',0)q,
23 o T K(INRY,BINR' 0),,
with
<[ Ky Bl 0w, (29
0°—No?. (2.4) j=1

The requirement that has to be positive expresses the sta-K(r],8[r;,0
bility condition that the confining potential has to be strong " , " , . ,
enough to overcome the repulsion between the particles. Ifa < (X] Bl 0WK (Y], BlY[ 0wK(Z] Bz 0w, (2.10
harmonic interparticlattractionis considered, the eigenfre-
quencyw would becomew=\Q?+Nw? and no stability
condition has to be imposed on the confining potential. No
tice that these transformations diagonalize neither the La
grangian nor the Hamiltonian because the coordinajese
not independent of the center-of-mass coordinate.

Since the system consists, in each direction, of one degree 1
of freedom with frequency) andN—1 degrees of freedom K,(r",B|r",0)= _12 EPK(PI7,BIr",0), (2.11)
with frequencyw, the propagator Nt

wherer_denotes a point in the configuration spat®, i.e.,

=((X1,Y1:21), - - - »(Xn+YN2ZN)). The symmetrized den-
sity matrix K, for 3D identical particleg(indicated by the
subscrlptl) can be obtained by using the following projec-
tion, with P denoting the permutation matrix:

Ko(ry, ... ruB8Ir, ... 14,0 where¢= +1 for bosons and=—1 fqr fermipns. It should
be emphasized th@& acts on the particle indices, not on the
=(ri,...rile” P, oo (2.5 components of separately. The partition function is then

S ) o ) readily obtained by integrating over the configuration space
for distinguishableparticles(indicated by the subscrif for

3 dimensions and in 1 dimension can be calculated from o 1 o
the action expressed in the imaginary time variable and it is Z|=f dr K,(r,ﬂ|r,0)=f dfm% EPKp(Pr,B]r,0).

of course a product of the propagatétg per component: (2.1
p(r1, - Bl - F0) The remaining part of this section will be devoted to the
=K (X", BIX", 00K 4(y". Bly", 00K 4(Z", B[Z",0), (2.6)  explicit evaluation of this integral for the partition function.

The integration proceeds in three stages: the first stage deals
where the column vector contains thex components of the with the center-of-mass treatment, the second one concerns
particles, i.e.x"=(xy, ... Xy) and similarly fory andz.  the cyclic decomposition, and in the third step the summa-
Knowing the propagatoK(x”,3|x’,0),, of a single har- tion over the cycles will be performed.
monic oscillator with frequencys

A. Center of mass

()
K(xg ,B1%0,0) = \/W The center-of-mass coording&not only depends on the
m sinhw £ coordinates of all the particles, but it also has its own propa-
- (xf3+x§)cosl’mﬂ—2xﬁx0 gator. Therefore, substitutirig by its expression in terms of
X ex 5 Sinfw 8 , the particle positions and then performing the integration

seems not to be the most adequate way to deal with the
(2.7 integration over the configuration space. Instead, the follow-
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ing identity is used for the formal treatmentRfas an inde- Combining these results originating from the permutation
pendent coordinate, at the expense of additional integration§ymmetry, one obtains

f drf ) Jde drf(r,R) 8| R 2 r,) def IkRK(\/NR,,BNNR,O)Q
@m°% K(JNR.B[VNRO),

. . . (1-1)M,
Fourier transformation of thé function then leads to >< 2 H §M T [, ()M, 2.19
fdrf( E rJ)

K|(k)=fdr|+1f dr|~-~fdr15(r|+1—r1)
—f de d ei“*f dri(rR)e kT, (2.14
- (2m)* ' ’ '

_ <1 K(rj1,Blr0we” M. (2.20

wherek"=(k/N)((1,1,1),...,(1,1,1) is a 3\-dimensional =1

row vector. Applying this transformation to the partition

function Z, and rearranging the factors one obtains The & function expresses that the decomposition is cyclic. It
is obvious that

K(VNR,B|YNR,0)o
f dRJ 3 Ik R
(2m)

K(VNR,8[VNR,0),, K() = KPP (k) KPP (k) KD (ky), (22D

fdr_z ng K((Pr):,Blr;, 0, k1N, (2.15  Which allows one to analyzg, (k) from its one-dimensional
I v constituents

This transformation makeR independent of the particle
positions relative to the center of mass. The real dependence  ;-(1D) :J dx J dx- - - f dx: 8(X o1 —x
on the relative positions is reintroduced by the Fourier trans- (k) I+l ! 1004417 %)

form. It should be noted that the explicit dependence of the N
propagator(2.9) on R, and the presence of the factor > K (x: . 0)..@ ik /N 292
e '®1i/N gre consequences of the two-body interactions. I Kt 1,810 - (222

The next step is to rewrite the sum over the permutations
as a sum over all possible cycles. This will be done in the
next subsection. An excellent example of such a decomposbS
tion into cycles has been given by Feynmanfor a system
of noninteracting particles in a box.

Using the semigroup propertyl5] of the harmonic-
cillator propagatoK(xj+l,B|xj,O)W, all integrations but
one can be performed

B. Cyclic decomposition (kx) de K(x,18|x,0) weXF( f drf( T)X(T)>
A permutation can be broken up into cycles. Suppose that (2.23
a particular permutation contaii, cycles of length. The
positive integerdVl; andl then have to satisfy the constraint
where
> IM;=N. (2.16 _
|
fX(T)—iNXZ s(t=ip). (2.24
Furthermore, the numbéd (M4, ... ,My) of cyclic decom- N
positions withM; cycles of length 1..., M, cycles of
lengthl, ... is known to be The integral(2.23 is the propagatoK,, ; of a driven har-
monic oscillator with the Lagrangian
N!
M(Mll"'!MN):—l M, - (217) 1 1
Mt Lut, = Ex2— Ew2‘><2+fx(r)x, (2.25

A cycle of lengthl will be obtained froml —1 permuta-

tions. Therefore, the sign factgf can be decomposed as studied in[11,16]. It should be noted again that without two-

body interactions the driving forc@.24) is lacking. Taking
gp:H gl=1M (2.18 over the result fronj16] and integrating over the configura-
[ tion space, one obtains
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C. Generating function

ZW’fx(B):J dxKu, X Concentrating on the explicit dependenceZgfN) on N

(with w considered as a parameteone can construct the
generating function

I f f x<r)fx<<r) i}
“2sinripw | 2 Ew=3 zN", (2.31
N=0
cos ( B | ) with 7,(0)=1 by definition. The partition functiorz, (N)
T— 0| |W . . . . .
2 can then be obtained by taking the appropriate derivatives of
X 1 ' (2.26 E (u) with respect tau, assuming that the series far(u) is
sinI'E,BW convergent nean=_0:
, , 1 dV
After straightforward algebra one obtains, for the 1D func- Zi(N) = — —< 2 (U)]y—o. (2.32
tion K{*P)(k,), | N! duM lu-o
0 I k2 14+ BW The summation over the number of cycles with lenptis
(ky) = mex TANZ W I—e AW now unrestricted and can easily be performed:
(2.27 o o= (3121w
E,(u)=ex - 1—,— 2.3
and for its 3D extension () p(z ¢ l(1—e 'AW)3 (233
K (k)= 1 3 b k_2 1+e AV (2.29 This series can be rewritten into the more familiar form
! 2 sinhl Bw 4N*w 1—e PV|"
Using Eq.(2.16 one then is left with a sixfold integral for m(u)zexp( _ggo §(V+1)(V+2)
the partition function
_ — BW(3/2+ v)
Ik.RK(\/NR,,[ﬂ\/NR,O)Q XIn(1—¢&ue ). (2.39

2= [ or[ e K(WNR.8|NR.0), o |
Before we study this equation in detail two remarks are in
><ex;< _ik_z 1+eﬁw) order: First,=,(u) is the generating function of a model
AN w 1—e AW without two-body interactions. In that case=() and
E,(u) coincides with the well-known[17-19 grand-
=DM 1 M canonical partition function of a set of identical particles in
x > I YRILA ( : ) a parabolic well. Second, for the noninteracting case
M v 2 sintgl sw in one dimension [i.e., with the multiplicity factor
(2.29 {(v+1)(v+2) replaced by J, we recover the results of Ref.
[20]. To the best of our knowledge, the interacting case has
Both the integrations ovek andR are Gaussian, leading to not been analyzed up to now for identical particles. For dis-

the following series foiZ, : tinguishable patrticles it has been studied bef@H.
1 3
smhi Bw . - .
7 7, (N) D. Recurrence relations for the partition function
=\ 1 I , . . — . .
sin - BQ Starting from the expression @, (u) derived in the pre-
hi ceding subsection for the interacting model, a recursion re-

lation can be obtained fdf(N). Introducing

g(l—l)M| e~ (1218w 3M
Z'(N)Eml,Z., M 1T (1_el,3w) b=e AW (2.39
(2.30
for brevity in the notations, we observe that

Without two-body interactionsw =), Z,(N) is the par-
tition function of a set of identical oscillators. The partition q - B2t v
function Z, differs from it only by a center-of-mass correc- —=,(u)=5,(u T+ 1) (42
tion and the actual values @i. The remaining summation du™ (W)==( )2 (V ) ) —ub¥e

over the cycles involves the constrai@.16), which, how- (2.36
ever, can be removed by the use of the generating function
technigue, which will be considered in the next subsection.Considering next
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N—1 a0 ) 1 1
Zi(N)= — —x=1 =— E(UW)|y=0 AR
N! duN~1du u=0 AN _ ~
s T/T=0.5
the product rule and an elementary binomial expansion can J Tm=1.0
be used to find 20 | --- TM=20 |
1 N1 (U2 (N-m)) 3 & 154 , -
Z(Ny== > N —— ) Z(m). (2.37) ;
N m=0 1_ b 10 ’,' el L
: . _ . _ 7N
The corresponding one-dimensional version of this recur- 5 J \\ |
rence relatior(indicated with the subscriptto distinguish it }:,’\ SN
0 T T T T =
0 20 40 60 80 100
N

from the 3D case with capital subscpifitecomes
,on for N=100 from the recurrence

(12(N—-m)

N—1
1
_ = N-m-1
LN=g 2 ¢ e si(m), (238
FIG. 1. Values ofpq, . ..
leading to the following partition functions in closed form relation (4.3 for the three temperaturdgT.=0.5, 1, and 2.

for one-dimensional bosons and one-dimensional fermions:
peated. First the propagator for distinguishable particles is
calculated. The next step will be the projection on the irre-

p(L/2N b(1/2)N2
ly=—— L=x—— (239
IT (1-bh IT (1—bi) ducible representation of the permutation group and perform-
=1 =1 ing the cyclic decomposition. Then the generating function is
introduced to circumvent the constraints on the partition in
cycles and finally the summation over the cycles is per-

It is easy to check that these partition functions are the solu
formed.
The fact that the energy spectrum and the wave function

tion of the recurrence relation fof;(N) with £&=1 for
bosons and = —1 for fermions. However, we did not find a
systematic method to obtain analytical solutions of this type e ) ' ’
of recurrence relations. For example, for the 3D case we haf@n be calculated when harmonic interparticle interactions
to rely on numerical schemes, as will be discussed belowdre included5] indicates that the propagator and the parti-
But at this stage, it is worthwhile first to consider the pres-tion function for the model in a magnetic field with two-body

ence of an homogeneous magnetic field as the origin of arinteraction can be obtained using our methods. The calcula-
tion technique is very demanding; therefore it seemed appro-

priate to illustrate the method on the basis of the simple

isotropy in our model oN identical oscillators.
model (3.1).
Ill. N IDENTICAL OSCILLATORS
IN A MAGNETIC FIELD
A. The propagator for distinguishable particles

The Lagrangian ofN particles in a confining parabolic
potential in the presence of a magnetic field is
For distinguishable particles, the many-particle propaga-
tor is a product of one-particle propagators. The one-particle
propagatoiK ()(r,8r’) of this model can be calculated by

N
Q2> 12, (3.
stochastic techniquef22] or by path-integral techniques

N 1
- i vy2_ =
L= 121 (1= 200xy))*~ 5 2
where w. is the cyclotron frequency. For this model, the [11]. The evaluation is somewhat lengthy but straightfor-

N| -

calculations of the preceding section can in essence be revard, resulting eventually in

B Q{[2%+ (2')?]cosBO — 227}

KO, Blr =/ @ > __ex
SRR 2 sinhBQ 27 sinhBs 2 sinhBQ

5 2 2 2 2 1 i
XeXp[_E(X +yc+ (X)) (y") )cosiﬁs—Z(xx’+yy’)coshz—ﬂwsmhﬂs}

sinh;,Bw
(3.2

1 1 ! ! ! !
Xexp| 1| Fw(Xy=x'y )_SThﬁs(y X—yx')
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with the eigenfrequency given by sis on the boson case. For fermions a different scheme will

have to be developed.
1
s=/ Q%+ ng. (3.3

The partition function corresponding to this single-particle

propagator is obtained by integrating over the configuration The recurrence relatio(2.37) is not directly accessible
space for numerical computation, as can easily be seen by evaluat-

ing the expected dominant factd®™'?/11}L,(1—b!)? for
Z(”(,B):f dr K (r,lr) bosons. For a relatively low temperature and a moderate
w¢ we number of particles, say=0.75 andN= 1000, this factor is
as small as 1.040210 182 We therefore isolate this factor
using the following scaling for the partition function:

A. In the absence of a magnetic field

-1

] Q S w¢)| . S g
85|nh8§smhe §+T sinhB 5771

(34) / B b(3/2)N
ZB(N)_UNHJ[\Ll(l_bj)3’ (41)

which coincides with the partition function of a 3D harmonic

oscillator if w=0. and rewrite the recurrence relatidqd.37) in terms of the

activit see, e.g.[21]) defined as
B. The partition function and generating function Yo g21)

for identical particles N
For N identical particles, the propagator becomes O'N:pNO'Nfl:NTN:UOJl:[O D (4.2

N
— 1
N= P (1) . ! . .
K|,wc(r,ﬂ|r ) Ngzp: § J-Hl ch((Pr)J 'B|r1)' (3.9 where op=pg=1 have been introduced for convenience.
The recurrence relatiof2.37) then becomes, after some ma-

with the corresponding partition function given by nipulations,
Z.,wC(N)=f drK  (1.8[1). (3.6 1(1-bM\¥ N2/ 1-p \3N o (1-pi)3
. _ N . PNTNl 1D mEZO 1—pN-m j=1r_n[+1 Pj '
Using the cyclic decomposition and the semigroup property (4.3

as before, followed by the relaxation of the constrdthi6
on the number of cycles, one finds for the generating funcThe corresponding recurrence relation for the internal energy

tion of the internal degrees of freedom becomes
=gt
Ewc(u)=exp(2,l|—zfjc>(lﬂ)u'). 3.7 M_Ei(l_bNﬂE 1+b  Ug(N-1)
hw Npn| 1—-Db 21-b Aw

Because, in this model, with a magnetic field no two-body

interactions were taken into account, this expression equals "3 1+bN"™  Ug(m)
the grand-canonical partition function of the model if +mE:0 E(N_ m)l_bN*m + AW
u=e’* is interpreted as the fugacity, with the chemical
potential. 1-b \* o' (1-pi)3
X T—pvm S . (4.4
IV. BOSONS IN THREE DIMENSIONS The temperature scale used to expresse™"*T is
In the previous sections we have obtained the grand- 15
canonical partition function of identical harmonic oscillators _ l) k_T= l
in a confining parabolic potential well without a magnetic £(3) w o T,
field [Eq. (2.34)] and in the presence of a magnetic figHd).
(3.7)]. For the same system the canonical partition functionwhere (4.5
is obtained for an attractive as well as for a repulsive har-
monic two-body interactiofEq. (2.30]. The expressions are £(3)=1.2021.
given for bosons and for fermions.
The actual calculation of the thermodynamic properties orf he recurrence relation@.3) and (4.4 for p,, ... ,py and
the mean-square radius of the 3D cloud of identical particled/s(1), . . . ,Ug(N) can be computed very efficiently. The
is substantially complicated by the lack of an explicit expres-values ofpy, . .. ,py for N=100 are shown in Fig. 1 for the

sion in closed form for the partition function. Therefore nu- three temperatures/T,=0.5, 1, and 2. Foll =2T, it turns
merical methods have to be used. We concentrate this analput thatp; is about 8 times larger tham_, for j approach-
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60 ! L L both ensembles without repulsive interactions is the require-
: ment that in the grand-canonical ensemble the system should
50 L be stable for any large number of particles, which is not the
———N=10 case in the Gaussian model with repulsion because the con-
awd T N=100 . fining potential can only accommodate a finite number of
---------- N=1000 particles as a consequence of E2.4). Another interesting
% 30 - B consequence of the repulsive interactions follows from the
-] dependence of the condensation temperaftyren the num-
20 - ber of particles, which obeys the following scaling law tak-
AT ing Eg. (2.4) into account:
10 - /—"’ ————————— -
el e T \/Qz—Nw2< N )1/3
L — . . ok (3)
0.0 0.5 1.0 15 2.0 ) s o 13
. L Y e L
O \1Q QL Q
FIG. 2. Internal energy/N=Ug(N)/NAw for N=10, 100, (4.9

1000 as a function oT /T, . For the case of attractive interactions and no confinement

. . ) . , potential, T, is proportional toN*3. The condensation tem-
ing N, which makes it extremely difficult to deal numerically peratyre for both cases is plotted in Fig. 4. For the Gaussian
with the values of the partition function rather than with the mode| the case of harmonic attraction does not pose any
proportionality factors. problem because in this model there is no sign of an “extra”
Oncepy is known, the internal energyg(N) is readily  collapse due to the nature of the interaction. The only con-
obtained from Eq.(4.4). The results forN=10, 100, and sequence seems to be that the condensation occurs at a much
1000 are shown in Fig. 2. The specific heat in the canonicahigher temperature than would be the case without two-body
ensemble can also be calculated from these parameters. Thigeractions or with a repulsive harmonic interaction.
is shown in Fig. 3, clearly illustrating the effect of conden-
sation for a finite number of particles. Anticipating Sec. B. In the presence of a magnetic field
IV B, it should be noted that the SpeCifiC heat in the canoni- The thermodynamic properties in the grand-canonica| en-
cal ensemble foN particles and without repulsive two-body semble of an ideal Bose gas in a parabolic well and in the
interactions is identical to the specific heat in the grandpresence of a magnetic field can be obtained directly from
canonical ensemble with the average number of particleEgs.(3.4) and(3.7). Substitutingu by the fugacitye®, the
given by the same value ®f. The reason why we compare Gibbs free energg,, for the boson casefe +1) becomes

1 *° 1 elB[,u,—(l/Z)Q—S]
Gy,=— Ezl T (1—e "B (1_g TASTW2ady(1_g 1As (T30l 4.7
|
After a power-series expansion of the denominators, the *
summation over the cycle lengthsan be performed: N= 2 Nj il

jkI=0
o]

¢ Bjito

X @~ skt g (12 a1y 4.8 (4.10

eBra—BOL2t]) o= BS(1+k+1)g— (12 Buck-1)
Nj k1= 1— ePrg PO ] g BS(ITKT ) g~ (12 Bug(k—T)

G, In(1—ePre=ARL2D)

and the fugacity can be eliminated in favor of the ground-

as expected from a Bose-Einstein distribution with energytate occupanciy,

levels
eﬁ#e7 (1/2).3967 Bs

No= 1—ePre (V2F0g Bs

—ebr=qeBll20+sl (417

1
St zwe |+

1
Ejyky|:—Q+S+jQ+k 2

2

1
S— Ewc . (49)
with

The average number of particlbls= —&Gwc/&,u is given by a=ng/(ng+1).
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10 L ! ! 1.0
81 ———N=10 i 087
----- N=100
g4 N=1000 '” L 0.6 -
= 'I:.: \ i
%.‘l 'II..': AN 3 c
4 II.'::_. \\”'4,_. u 0.4
st == \‘::‘:‘—-"-‘-i“-n--.- — ]
o
o i
/,:,f
0 < . . 0.0
0.0 05 10 15 2.0 0.0
T,
FIG. 3. Specific heaCg/Nk per particle in units of the Boltz- FIG. 5. Relative ground-state occupanty/N as a function of
mann constark for N=10, 100, 1000 as a function Gi/T,. 7/NY3, with 7 the reduced temperature=kT/w for w,=0 and for

several values oN.
Restoring the cyclic summation for reasons of numerical

convergence, one obtains for the average number of partgnisotropy only moderately influences the temperature de-
cles pendence of the ground-state occupancy.
The internal energjdwc=a(BGwc)/&B—,uN becomes

* |
N:E %, D|E(l—efI'BQ)(l—e*|3[3+(1/2)wc])
=1 U

Bl (0] © o180 1 e~ 1Blst (12w
—_a S— (] — — _
X(l € C)r (412 Uwc_zl D|<Qm+ S+2w0)1_e—|,8[s+(l/2)a)c]
which can be cast in the form of the numerically tractable 1 e~ 1Bls— (12w
series +|s— Ewc) 1_e_|ﬁ[5_(1/2)wc]) (414)
o ” 1
N=-—+ NW——1]. 4.1
1—a 21 “\b, ) (4.13

and its numerical evaluation oneeis determined presents

no numerical difficulties. The resulting specific heat is shown
For givenN, standard numerical techniques can be used t¢ Fig. 7 for w./Q=5. A comparison with Fig. 3 reveals that
determinea c[0,1] and hence the ground-state occupancyhe anisotropy due to the magnetic field essentially broadens
No, which is shown in Fig. 5 forw =0 and in Fig. 6 for  the peak in the specific heat near the condensation tempera-

w./Q=5 as a function ofl /T, for several values oN. It tyre, but does not substantially alter the structure.
turns out that the parabolic well is more important than the

anisotropy due to the presence of the magnetic field. The

1.50 ' : ' ' TINT 0/Q=5
\\‘ \\ N N=1
1.25 0.8 \ \ ———N=10 §
g T N N=100
=o (S
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FIG. 4. Critical temperatur@& . as a function of the number of FIG. 6. Relative ground-state occupangy/N as a function of

particlesN for a repulsive(full line) and an attractivédashed ling /N3 with 7 the reduced temperature=kT/w for w./Q=5 and
two-body interaction. for several values ol.
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thermodynamical quantities of the model, such as the inter-
nal energy and the specific heat.

Also the thermodynamic properties of the same model in
the presence of a homogeneous magnetic field could be in-
vestigated along these lines. A detailed analysis of the ideal
gas in a confining parabolic potential with anisotropy due to
a magnetic field was presented; special attention was paid to
the relation between the number of condensed atoms, the
magnetic field, the strength of the confinement potential, and
the total number of particles. The relationship between the
parameters of our model and the characteristics of atomic
traps[2—4] lies beyond the scope of the present paper.

It should be mentioned that in the absence of two-body
interactions, the generating function can be identified as the
grand-canonical partition function. In that case the specific
heat as obtained from the grand-canonical ensemble for an
average number @iN) particles calculated using the chemi-
cal potential equals the specific heat obtained from the ca-
nonical ensemble with the number of particldsgiven by
(N). For a more elaborate discussion we refe[1d].

It should also be mentioned that in this the model it is
assumed that the spin degrees of freedom are fixed. This
simplifying assumption is imposed by the symmetrization

V. DISCUSSION AND CONCLUSION method, which becomes more involved if the spin degrees of

In this paper we applied the method of symmetrical denfreedom depend on the.gonfigura.tion of the particles. .
sity matrices, developed by Feynman for a system of nonin- [N Summary, the partition function of a general Gaussian
teracting particles in a box, to a system of harmonically in-model for bosons and fermions, with or without a magnetic
teracting particles in a confining parabolic potential. Thefield, has been calculated analytically and the thermodynami-
interaction could be taken into account, due to the Gaussiaf@! Properties of this model have been studied. Particular
nature of the propagators, allowing integration over the con@tténtion has been given to the Bose-Einstein condensation
figuration space. The symmetrization resulting from the proin the presence of two-body interactions, repulsive and at-
jection of the propagators for distinguishable particles on thdractive, and in the presence of a magnetic field.
appropriate representation of the permutation group gives
rise to a series that could be summed using the generating
function technique. Without these generating functions the
calculation has to be restricted to a limited number of par-
ticles [6,7,23. Using them, not only could the grand-  Part of this work was performed in the framework of the
canonical partition functiorfE (u) be obtained in the param- NFWO Projects Nos. 2.0093.91, 2.0110.91, G.0287.95, and
eter range of the model whegg(u) is well defined, but also  W0.073.94N(Wetenschappelijke Onderzoeksgemeenschap,
the canonical partition functiong(N) for a given number Scientific Research Community of the NFWO on “Low-
N of identical particles could be obtained as a recursion oDimensional Systemg”and in the framework of the Euro-
partition functions of a smaller number of particles for thepean Community Program Human Capital and Mobility
interacting system. The recurrence relation for the activitthrough Contracts Nos. CHRX-CT93-0337 and CHRX-
PN, 1-€., the proportionality factor betweed(N) and  CT93-0124. F.B. acknowledges the National Fund for Scien-
Z(N—1), allows for an accurate numerical treatment of thetific Research for financial support.

FIG. 7. Specific hea€Cg/NKk per particle in units of the Boltz-
mann constank as a function ofr/N*3 with 7 the reduced tem-
peraturer=kT/w for w./Q2=5 and for several values &.
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